Fuzzy Clustering Based Segmentation Of Vertebrae in T1-Weighted Spinal MR Images
نویسندگان
چکیده
Image segmentation in the medical domain is a challenging field owing to poor resolution and limited contrast. The predominantly used conventional segmentation techniques and the thresholding methods suffer from limitations because of heavy dependence on user interactions. Uncertainties prevalent in an image cannot be captured by these techniques. The performance further deteriorates when the images are corrupted by noise, outliers and other artifacts. The objective of this paper is to develop an effective robust fuzzy Cmeans clustering for segmenting vertebral body from magnetic resonance image owing to its unsupervised form of learning. The motivation for this work is detection of spine geometry and proper localisation and labelling will enhance the diagnostic output of a physician. The method is compared with Otsu thresholding and K-means clustering to illustrate the robustness.The reference standard for validation was the annotated images from the radiologist, and the Dice coefficient and Hausdorff distance measures were used to evaluate the segmentation.
منابع مشابه
Image segmentation techniques in medical sciences
Classical and clustering techniques for image segmentation are important tools in medical sciences. Classical techniques include histogram, region growing, watershed, and contour. The more recent clustering techniques include standard fuzzy c-means clustering, kernelized c-means, spatial constrained fuzzy c-means, and k-means clustering. These methods are applied on different images, synthetic ...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملAutomated MRI brain tissue segmentation based on mean shift and fuzzy c-means using a priori tissue probability maps
This paper presents a novel fully automated unsupervised framework for the brain tissue segmentation in magnetic resonance (MR) images. The framework is a combination of Bayesian-based adaptive mean shift, a priori spatial tissue probability maps and fuzzy c-means. Mean shift is employed to cluster the tissues in the joint spatial-intensity feature space and then a fuzzy c-means is applied with...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملAutomatic Segmentation of Brain Tumors on Non-Contrast-Enhanced Magnetic Resonance Images using Fuzzy Clustering
Manual brain tumor segmentation from magnetic resonance imaging is a difficult and time-consuming task for physicians. For this reason, an automated brain tumor segmentation method is desirable. Currently, segmentation of gadolinium-enhanced tumor is feasible via combining semi-supervised clustering with knowledge-based analysis [1]. However, the accuracy of supervised segmentation techniques d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1605.02460 شماره
صفحات -
تاریخ انتشار 2016